随着基因工程技术的发展,新的核酸分子杂交技术不断出现和完善,核酸分子杂交可按作用环境大致分为固相杂交和液相杂交两种类型。固相杂交是将参加反应的一条核酸链先固定在固体支持物上,一条反应核酸链游离在溶液中,固体支持物有硝酸纤维素滤膜、尼龙膜、乳胶颗粒、磁珠和微孔板等。液相杂交所参加反应的两条核酸链都游离在溶液中。

在固相杂交中,未杂交的游离片段可容易地漂洗除去,膜上留下的杂交物容易检测和能防止靶DNA自我复性等优点,所以比较常用。常用的固相杂交类型有:菌落原位杂交、斑点杂交、狭缝杂交、Southern印迹杂交、组织原位杂交和夹心杂交等。

液相杂交是一种研究最早且操作简便的杂交类型,由于液相杂交后过量的未杂交探针在溶液中除去较为困难和误差较高,所以不如固相杂交那样普遍。近几年由于杂交检测技术的不断改进,商业性基因探针诊断盒的实际应用,推动了液相杂交技术的迅速发展,下面对固相杂交和液相杂交分别进行介绍。

(一)固相膜核酸分子杂交方法。

固相核酸杂交多是在膜上进行,因此,以下主要介绍固相膜的核酸分子杂交方法。

1.DNA的变性解链是杂交成功的关键,Southern印迹杂交时DNA在凝胶中变性,变性方法是将凝胶浸在数倍体积的1.5mol/l NaCl和0.5mol/L NaOH中1小时,然后用数倍体积的1mol/L Tris-HCl (pH8.0)和1.5mol/L NaCl溶液中和1小时。DNA受酸、碱、热等处理均能发生变性,但强酸会使核酸降解。碱变性可避免DNA的降解、热变性要在低DNA浓度(100μg/ml)和低盐浓度(0.1SSC 15mmol/L NaOH,1.5mmol/L柠檬酸三钠,pH7.0)下进行。用SSC稀释DNA溶液为50μg/ml,加10mol/l NaOH使最终浓度为0.1mol/L(pH约12.8),室温变性10min,很快置冰盐水中,用10mol/l HC1或5mol/L NaH2PO4调pH到7-8(亦可用碱变性后,调至中性,再加热100℃后,调至中性,或只加热100℃10min)。DNA变性可用OD260增加(约30-40%)来检测,变性DNA醇沉淀呈雪样,完全失去纤维状沉淀。变性后加入等量冷的12×SSC,冰溶保存。

2.变性DNA在硝酸纤维素膜上的固定。硝酸纤维素滤膜(孔径0.45um)先在蒸馏水中充分浸泡,再用6SSC浸泡30min~2h,凉干,DNA样品转移或加至硝酸纤维素膜上后,先室温干燥4h,然后再在80℃真空干燥2h。

3.预杂交。湿润的滤膜放入可加热封口的塑料袋中,按每平方厘米膜加0.2ml预热至60℃的预杂交液(6×SSC,0.5%SDS,5×Denhardt液,100μg/ml鲑鱼精DNA)。鲑鱼精DNA需经过剪切和DNA酶消化处理,然后酒精沉淀纯化,调浓度至10μg/ml,用前放100℃水溶液中煮沸变性10min,冰水骤冷。尽可能将袋中气泡赶尽,用封口器将袋口封住。将杂交袋浸入68℃水浴中保温3-12h,当预杂交液温度升至68℃时,在滤膜表面常会形成水气泡,轻轻晃动袋中液体即可除去这些小气泡,这一点对于保证滤膜表面充分浸润预杂交液很重要。

4.杂交。 从水浴中取出塑料袋,用剪刀剪开一角,尽可能挤净预杂交液,用吸管或大枪头将杂交液加入袋中,用恰好足量的液体保持滤膜湿润(50ul/cm2)。溶液的组成是6×SSC,0.01mol/L EDTA,变性的标记核酸探针,5×Denhardt液,0.5%SDS,100mg/ml变性的鲑鱼精DNA。尽可能赶尽气泡后,将塑料袋严密封口。杂交反应在68℃水浴中进行,所需时间视探针和检测靶DNA的性质及探针的比活性等情况而定,一般为4-20h。

5.洗膜。取出塑料袋,用剪刀剪开,小心取出滤膜,立即浸入盛有2×SSC和0.5%SDS溶液的盘中,室温下漂洗5min,再将滤膜移入2×SSC和0.1% SDS中,室温下洗涤15分钟(轻轻摇动),然后将滤膜移入0.1%×SSC和0.5%×SDS溶液中,68℃轻轻摇动保温2h,更换缓冲液后继续保温30min。

洗脱的温度一般应控制在Tm值12℃以下,[Tm=69.3+0.41×(G+C)%],双链DNA的Tm值随错配碱基对数每增加1%而递减1℃。

6.结果显示。放射性测定方法,固相膜的放射性杂交结果显示有两种方式,一是放射自显影法、另一是液闪计数法,放射自显影法比较简单,只需将杂交膜与X光片在暗盒中暴光数小时至数天,再显影,定影即可。对于杂交信号较强的固相膜,用一块增敏屏可显著增强暴光强度。此外,为了减弱32P的放射,暴光通常在-20℃或-80℃下进行。液闪计数法主要用于斑点和狭缝杂交及为了比较两个杂交信号的强弱等情形,方法是将完成杂交的膜在漂洗结束后剪成小块(每份样品1块),80℃真空干燥后装闪烁瓶,加入2—5ml闪烁液,剪2-3块无样品作为本底对照,在液体闪烁计数器上自动计数,液体计数测定放射性强度也可以在放射自显影之后进行。

(二)固相核酸分子杂交类型

1.菌落原位杂交(colony in situhybridization)。是将细菌从一主平板转移到硝酸纤维素滤膜上,然后将滤膜上的菌落裂菌以释放出DNA,将DNA烘干固定于膜上与32P标记的探针杂交,放射自显影检测菌落杂交信号、并与主平板上的菌落对位。

实验步骤如下:

①将硝酸纤维素滤膜置于含抗生素的平皿琼脂培养基上,用无菌牙签挑取单菌落种于滤膜和主琼脂平板上,排列成方格栅,膜和板上菌落位置相同。

②培养细菌至产生1-2mm大小的菌落。

③在一块平皿中置4张滤纸,用10%SDS浸透,倒掉多余液体,将带有菌落的滤膜取下轻轻置于滤纸上,菌落面在上,注意防止滤膜底面存有气泡。

④5min后,将滤膜转至用变性溶液(0.5mol/L NaOH,1.5mol/LNaCl)浸湿的滤纸上,放置10min。

⑤将滤膜转至中和溶液(1.5mol/l NaCl, 0.5mol/L Tris-HClpH8.0)浸湿的滤纸上,放置10min,重复中和一次。

⑥将滤膜移至用2×SSPE溶液浸过的滤纸上,放置10min,SSPE配成20×贮备液:3.6mol/lNaCl,0.2mol/L NaH2PO4(pH7.4),20mmol/L EDTANa2(pH7.4)。

⑦将滤膜用滤纸吸干,80℃真空烘干2h。

2.斑点杂交(Dot blot)。是将被检标本点到膜上,烘烤固定。这种方法耗时短,可做半定量分析。一张膜上可同时检测多个样品,为使点样准确方便,市售有多种多管吸印仪(Manifold),如MinifoldⅠ和Ⅱ、Bio-Dot(Bio-Rad)和Hybri-Dot,它们有许多孔,样品加到孔中,在负压下就会流到膜上呈斑点状或狭缝状。反复冲洗进样孔,取出膜烤干或紫外线照射以固定标本,这时的膜就可以进行杂交。

(1)DNA斑点杂交:

①先将膜在水中浸湿,再放到15×SSC中。

②将DNA样品溶于水或TE,煮沸5min,冰中速冷。

③用铅笔在滤膜上标好位置,将DNA点样于膜上,每个样品一般点5μl(2~10μg DNA)。

④将膜烘干,密封保存备用。

(2)RNA斑点杂交:与上法类似,每个样品至多加10μg总RNA(经酚/氯仿或异硫氰酸胍提取纯化),方法是将RNA溶于5μl DEPC水,加5μl甲醛/SSC缓冲液(10×SSC中含6.15mol/L甲醛),使RNA变性,然后取5-8μl点样于处理好的滤膜上,烘干。

(3)完整细胞斑点杂交:应用类似检测细菌菌落的方法,可以对细胞培养物的特异序列进行快速检测,将整个细胞点到膜上,经NaOH处理,使DNA暴露、变性和固定,再按常规方法进行杂交与检测。有人曾用此法从105个培养细胞中检测到至少5pg的Epstein-Barr病毒DNA。完整细胞斑点印迹法可以用于筛选大量标本,因为它使细胞直接在膜上溶解,所以DNA含量甚至比常用的提取法还高,又不影响与32P标记的探针杂交,但它不适用于非放射性标记探针,因为DNA纯度不够,会产生高本底。

3.Southern印迹杂交(Southern blot)。是研究DNA图谱的基本技术,在遗传病诊断、DNA图谱分析及PCR产物分析等方面有重要价值。Southern印迹杂交的基本方法是将DNA标本用限制性内切酶消化后,经琼脂糖凝胶电泳分离各酶解片段,然后经碱变性,Tris缓冲液中和和高盐下通过毛吸作用将DNA从凝胶中转印至硝酸纤维素膜上、烘干固定后即可用于杂交。凝胶中DNA片段的相对位置在DNA片段转移到滤膜的过程中继续保持着,附着在滤膜上的DNA与32P标记的探针杂交,利用放射自显影术确立探针互补的每一条DNA带的位置,从而可以确定在众多消化产物中含某一特定序列的DNA片段的位置和大小。

(1)琼脂糖凝胶电泳。利用琼脂糖凝胶电泳可以很容易地将DNA限制酶消解片段(0.3~25kb)分离开,分离大分子DNA片段(800-12000bp)用低浓度琼脂糖(0.7%),分离小分子片段(500~1000bp)用高浓度琼脂糖(1.0%),300-5000bp的片段则用1.3%的琼脂糖凝胶。根据分离样品品质,分离速度和分辨率要求的不同,可选用不同规格的电泳槽。

电泳时,同时将分子量标记物加到旁边孔中,便于确定样品DNA的分子量。20伏恒压电泳过夜,电泳完毕,将胶浸到含0.5μg/ml EB的TBE缓冲液中染色30min,也可将EB直接加到电泳缓冲液中或在灌胶前加入胶片中,在254nm短波透射灯下拍照,加橙黄色滤色镜,使用高速一次成像胶片,光圈f4.5,曝光20-40s。

(2)硝酸纤维素膜吸印。

[1]将胶片切成合适大小,切去右上角作为记号。

[2]将胶片放进盛有变性缓冲液(1.5mol/l NaCl,0.5mol/L NaOH)的盘中轻晃15min。

[3]换到中和缓冲液(1mol/l Tris-HCl,pH8.0,0.15mol/L NaOH)的盘中轻晃30min。

[4]裁一张硝酸纤维素膜、2-4张3mm滤纸和一些吸印纸(可用卫生纸),都与胶的大小相同(硝酸纤维素膜和吸印纸不能比胶大,否则易形成旁路)。先将硝酸纤维素膜浸到水中,再放入10×SSC缓冲液,接触胶和硝酸纤维素膜时都要戴手套操作。

[5]平盘上放一块比胶大的平板上面铺一张3mm滤纸,起灯蕊作用,盘中加入少量10×SSC缓冲液(2.5cm厚),不能没过平板,使3mm滤纸充分饱和。

[6]将胶倒扣在3mm滤纸上。

[7]浸湿的硝酸纤维素膜在胶上,对齐。铺膜时从一边逐渐放下,防止产生气泡,有气泡时,可用吸管赶出,不能让膜与胶下的滤纸直接接触。

[8]膜上放一张3mm滤纸,不能与胶接触。

[9]上面加吸印纸及重物(500g左右)。

[10]通过滤纸的灯芯作用,平盘中的缓冲液就会通过胶上移,从而将DNA吸印到膜上,及时更换浸湿的吸印纸,在室温下转印过夜。

[11]清除上面的东西。用镊子将膜取出,在6×SSC中洗一下。

[12]自然干燥,80℃烤2h。

[13]这是的膜就可进行杂交,或室温密封保存。

4.Northern印迹杂交(Northernblot)。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。DNA印迹技术由Southern于1975年创建,称为Southern印迹技术,RNA印迹技术正好与DNA相对应,故被称为Northern印迹杂交,与此原理相似的蛋白质印迹技术则被称为Western blot。Northern 印迹杂交的RNA吸印与Southern印迹杂交的DNA吸印方法类似,只是在进样前用甲基氢氧化银、乙二醛或甲醛使RNA变性,而不用NaOH,因为它会水解RNA的2'-羟基基团。RNA变性后有利于在转印过程中与硝酸纤维素膜结合,它同样可在高盐中进行转印,但在烘烤前与膜结合得并不牢固,所以在转印后用低盐缓冲液洗脱,否则RNA会被洗脱。在胶中不能加EB,因为它会影响RNA与硝酸纤维素膜的结合。为测定片段大小,可在同一块胶上加分子量标记物一同电泳,之后将标记物切下、上色、照像,样品胶则进行Northern转印。标记物胶上色的方法是在暗室中将其浸在含5μg/ml EB的0.1mol/L醋酸铵中10min,光在水中就可脱色,在紫外光下用一次成像相机拍照时,上色的RNA胶要尽可能少接触紫外光,若接触太多或在白炽灯下暴露过久,会使RNA信号降低。琼脂糖凝胶中分离功能完整的mRNA时,甲基氢氧化银是一种强力、可逆变性剂,但是有毒,因而许多人喜用甲醛作为变性剂。所有操作均应避免RNase的污染。

RNA甲醛凝胶电泳和吸印方法。

<1>试剂:

10×MSE缓冲液:0.2mol/L吗啉代丙烷磺酸(MOPS),pH7.0,50mmol/L醋酸钠,1mmol/L EDTA pH8.0。

5×载样缓冲液:50%甘油,1mmol/lEDTA,0.4%溴酚蓝。

甲醛:用水配成37%浓度(12.3mol/L),应在通风柜中操作,pH高于4.0。

20×SSC;

去离子甲酰胺;

50mmol/LNaOH(含10mmol/L NaCl);

0.1mol/LTris,pH7.5。

<2>步骤:

[1]40ml水中加7g琼脂糖,煮沸溶解,冷却到60℃,加7ml10×MSE缓冲液,11.5ml 甲醛,加水定容至70ml,混匀后倒入盛胶槽。

[2]等胶凝固后,去掉梳子和胶布,将盛胶槽放入1×MSE缓冲液的电泳槽。

[3]使RNA变性(最多20μg),RNA4.5ml,10×MSE缓冲液20ml,甲醛3.5ml,去离子甲酰胺10ml。

[4]55℃加热15min,冰浴冷却。

[5]加2ml5×载样缓冲液。

[6]上样、同时加RNA标记物。

[7]60伏电泳过夜。

[8]取出凝胶,水中浸泡2次,每次5min。

[9]室温下将胶浸到50mmol/l NaOH和10mmol/LNaCl中45min,水解高分子RNA,以增强转印。

[10]室温下将胶浸到0.1mmol/L Tris HCl(pH7.5)中45min,使胶中和。

[11]20×SSC洗胶1h。

[12]20×SSC中过夜转印到硝酸纤维素膜上。

[13]取出硝酸纤维素膜,80℃真空烘烤2h。

5.组织原位杂交(Tissue in situ hybridization)。组织原位杂交简称原位杂交,指组织或细胞的原位杂交,它与菌落原位杂交不同,菌落原位杂交需裂解细菌释出DNA,然后进行杂交,而原位杂交是经适当处理后,使细胞通透性增加,让探针进入细胞内与DNA或RNA杂交,因此原位杂交可以确定探针互补序列在胞内的空间位置,这一点具有重要的生物学和病理学意义。例如,对致密染色体DNA的原位杂交可用于显示按规定序列的位置,对分裂期间核DNA的杂交可研究特定序列在染色质内的功能排布;与细胞RNA的杂交可精确分析任何一种RNA在细胞中和组织中的分布。此外,原位杂交还是显示细胞亚群分布和动向及病原微生物存在方式和部位的一种重要技术。

用于原位杂交的探针可以是单链或双链DNA,也可以是RNA探针。通常探针操作的长度以100-400nt为宜,过长则杂交率减低。最近研究结果表明,寡核苷酸探针(16-30nt)能自由出入细菌和组织细胞壁,杂交效率明显高于长探针,因此,寡核苷酸探针和不对称PCR标记的小DNA探针或体外转录标记的RNA探针是组织原位杂交优选探针。

探针的标记物可以是放射性同位素,也可以是非放射性生物素和半抗原等,放射性同位素中,3H和35S最为常用,3H标记的探针半衰期长,成像分辨率高,便于定位,缺点是能量低,35S标记探针活性较高,影像分辨率也较好,而32P能量过高,致使产生的影像模糊,不利于确定杂交位点。

原位杂交中,标本的固定条件是影响杂交效率的重要因素。标本组织蛋白质的消化程度对探针进入细胞极为重要,去除蛋白质的方法是,用0.2mol/l HCl处理载玻片,用蛋白酶K消化,然后用不同浓度的乙醇脱水。原位杂交还是一种新技术,发展很快,在敏感性、特异性、稳定性上还需进一步完善和提高。

6,固相夹心杂交。Dunn等最早介绍了夹心杂交类型,Ranki等又作了进一步的改进,夹心杂交法比直接滤膜杂交法有两个主要的优点:(1)样品不需固定,对粗制样品能做出可靠的检测;(2)用夹心杂交法比直接滤膜杂交法特异性强,因为只有两个杂交物都杂交才能产生可检测的信号。

固相夹心法杂交需要两个靠近而又互相重叠的探针,一个做固相吸附探针,另一个作标记检测探针,样品基因组内核酸只有使这两个探针紧密相连才能形成夹心结构,需要注意的是两探针必须分别亚克隆进入两个分离的非同源载体内,以避免产生高的本底信号。

夹心杂交法可用滤膜和小珠固定吸附探针,使用小珠可更好地进行标准化试验和更容易对小量样品进行操作。Dahlen等利用微孔板进行夹心杂交,可同时进行大量样品检测,他们先吸附DNA探针加到凹板中,然后用紫外线照射使其固定到塑料板上,用微孔板进行夹心杂交还可直接用于PCR技术。应用光敏生物素标记探针,检测PCR产物的敏感性和用32P标记探针(3×108cpm/μg)作16h放射自显影的Southern杂交的敏感性一样。用微孔板杂交的其它优点还有可同时操作多份样品,加样、漂洗和读结果等步骤可以自动化。

7. 其它杂交类型

(1)固化探针杂交。该法较少使用,原理是使未标记固化探针通过杂交与靶RNA或DNA结合,漂洗后,用酶标抗DNA:RNA抗体或抗DNA:DNA抗体与杂交物结合,将乳胶颗粒收集,吸附到膜上后漂洗、加入底物显色并进行测定,探针浓度为2μg/ml,80℃杂交,可在10-15min完成,检测的敏感性为5×106靶序列。

(2)反向杂交:这个杂交类型是用标记的样品核酸与未标记的固化探针DNA杂交,故称为“反向杂交”。这种杂交方法的优点是在一次杂交中,可同时检测样品中几种核酸。这种杂交方式主要用于进行中的核转录试验和多种病原微生物的检测,前者是在转录过程中标记RNA探针,后者可用光敏生物素制剂BPA标记样品核酸。

8.固相膜核酸杂交膜的选用。杂交膜是一种多孔、表面积很大的固相载体,核酸一旦固定在上面,就可用杂交法进行检测。最常使用的膜是硝酸纤维素膜,用于放射性和非放射性标记探针都很方便,产生的本底浅,与核酸结合的化学性不是很清楚,推测为非共价键结合,经80℃烤干2h和杂交处理后,核酸仍不会脱落。硝酸纤维素膜的另一特点是只与蛋白有微弱非特异结合,这在使用同位素探针中尤为有用。硝酸纤维素膜的缺点是结合核酸能力的大小取决于转印条件和高浓度盐(>10×SSC),与小片核酸(<200bp)结合不牢,质地脆,不易操作。

尼龙膜在某些方面比硝酸纤维素膜好,它的强度大,耐用,可与小至10bp的片段共价结合,在低离子浓度缓冲液等多种条件下,它们都可与DNA单链或RNA紧密结合,且多数膜不需烘烤。尼龙膜韧性好,可反复处理与杂交,而不丢失被检标本,它通过疏水键和离子键与核酸结合,结合力为350-500μg/cm2,比硝酸纤维素膜(80-100μg/cm2)强许多。尼龙膜的缺点是对蛋白有高亲合力,不宜使用非同位素探针。

9.“噪音”的排除。“噪音”(noise)是固相膜杂交方法常遇到的问题,指标记DNA结合到空白膜上的放射性计数,即本底。这个问题的克服一是使用高纯度的核酸制品和充分严格的杂交条件,二是选择合格的杂交反应液和对膜进行处理。研究发现,随着离子强度的增加,空白膜(未固定DNA对照膜)上的“噪音”水平增加,而在50%甲酰胺-6×SSC的杂交反应液中“噪音”最低。目前,最常使用的消除噪音的方法是用Denhardt液与固定膜预保温,这样可以充分封闭膜上的多条非特异结合位点。

(三)液相核酸分子杂交类型

1、吸附杂交

(1)HAP吸附杂交,羟基磷灰石层析或吸附是液相杂交中最早使用的方法,在液相中杂交后,DNA:DNA杂交双链在低盐条件可特异地吸附到HAP上,通过离心使吸附有核酸双链HAP沉淀,再用缓冲液离心漂洗几次HAP,然后将HAP置于计数器上进行放射性计数。

(2)亲和吸附杂交:生物素标记DNA探针与溶液中过量的靶RNA杂交,杂交物吸附到酰化亲和素包被的固相支持物(如小球)上,用特异性抗DNA:RNA杂交物的酶标单克隆抗体与固相支持物上的杂交物反应,加入酶显色底物。这个系统可快速(2h)检测RNA。

(3)磁珠吸附杂交:Gen-Probe公司最近应用丫啶翁酯(Acridinium ester)标记DNA探针、这种试剂可用更敏感的化学方法来检测,探针和靶杂交后,杂交物可特异地吸附在磁化的有孔小珠(阳离子磁化微球体)上,溶液中的磁性小珠可用磁铁吸出,经过简单的漂洗步骤,吸附探针的小珠可用化学发光测定。

2、发光液相杂交

(1)能量的传递法。Heller等设计用两个紧接的探针,一个探针的一端用化学发光基团(供体)标记,另一个探针的一端用荧光物质标记,并且这两个探针靠得很近,两个靠得很近的探针用不同的物质标记(光发射标记)。当探针与特异的靶杂交后,这些标记物靠得很近,一种标记物发射的光被另一种标记物吸收,并重新发出不同波长的光,调节检测器使自动记录第二次发射光的波长,只有在两个探针分子靠得很近时,才能产生激发光,因此这种方法具有较好的特异性。

(2)丫啶翁酯标记法。丫啶翁酯标记探针与靶核酸杂交后,未杂交的标记探针分子上的丫啶翁酯可以用专门的方法选择性除去,所以杂交探针的化学发光是与靶核酸的量成比例的。该法的缺点是检测的敏感度低(1ng的靶核酸),仅适用于检测扩增的靶序列,如rRNA或PCR扩增产物。

3、液相夹心杂交

(1)亲和杂交 在靶核酸存在下,两个探针与靶杂交,形成夹心结构。杂交完成后,杂交物可移到新的管或凹孔中,在其中杂交物上的吸附探针可结合到固相支持物上,而杂交物上的检测探针可产生检测信号。用生物素标记吸附探针,及125I标记检测探针。这个系统的敏感性可检测出4×105靶分子,该试验保持了固相夹心杂交的高度特异性。

(2)采用多组合探针和化学发光检测 第一类探针是未标记的检测探针和液相吸附探针,它们有50个碱基长,其中含有30个细菌特异序列碱基和20个碱基的单链长尾;第二类探针是固相吸附探针,它可吸附在小珠或微孔板上。未标记检测探针的单链长尾用于结合扩增多体(标记探针),液相吸附探针和靶杂交物从溶液中分离并固定在小珠或微板上。典型的试验可有25个不同的检测探针和10个不同的吸附探针,第一个标记检测探针上附着很多酶(碱性磷酸酶或过氧化物酶),可实现未标记检测探针的扩增,使用化学发光酶的底物比用显色反应酶的底物敏感。这个杂交方法用于乙肝病毒、沙眼衣原体、淋球菌以及质粒抗性的检测,敏感性能达到检测5×104双链DNA分子。

4、复性速率液相分子杂交

这个方法的原理是细菌等原生物的基因组DNA通常不包含重复顺序,它们在液相中复性(杂交)时,同源DNA比异源DNA的复性速度要快,同源程度越多,复性速率和杂交率越快。利用这个特点,可以通过分光光度计直接测量变性DNA在一定条件下的复性速率,进而用理论推导的数学公式来计算DNA-DNA之间的杂交(结合)度。