一、建立假设和确定检验水准

假设有二。一是无效假设(null hypothesis),符号为H0。假设两总体均数相等(μ=μ0),即样本均数x所代表的总体均数μ与假设和总体均数μ0相等。x和μ0差别仅仅由抽样误差所致;二是备择假设(alternative hypothesis),符号为H1。二者都是根据推断的目的提出的对总体特征的假设。这里还有双侧检验和单侧检验之分,需根据研究目的和专业知识而定:若目的是推断两总体是否不等(即是否μ≠μ0),并不关心μ>μ0还是μ<μ0,应用双侧检验,H0:μ=μ0,H1:μ≠μ0;若从专业知识已知μ>μ0,不会μ<μ0(或已知μ<μ0不会μ>μ0),或目的是推断是否μ>μ0(或μ<μ0),则用单侧检验,H0:μ=μ0,H1:u>μ0(或μ<μ0)。一般认为双侧检验较为稳妥,故较常用。

检验水准(size of a test)亦称显著性水准(significance level),符号为α,是假设检验时发生第一类错误的概率。α常取0.05或0.01。

二、选定检验方法和计算统计量

根据研究设计的类型、资料类型及分析目的选用适当的检验方法。如配对设计的两样本均数比较,选用配对t检验;完全随机设计的两样本均数比较,选用u检验(大样本时)或t检验(小样本时)等。

不同的检验方法有不同的检验假设以及不同的公式。根据公式计算现有样本统计量,如t值、u值等。

三、确定P值,作出推断结论

用算得的统计量与相应的界值作比较,确定P值。P值是指在由H0所规定的总体中随机抽样,获得等于及大于(或等于及小于)现有统计量的概率。根据P值大小作出拒绝或不拒绝H0的统计结论。