(一)相关系数(correlation coefficient)

相关系数是表示两个变量(X,Y)之间线性关系密切程度的指标,用r表示,其值在-1至+1间。如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。计算相关系数的公式为:

一、相关分析(correlation analysis)(当前章节内容组合) - 图1

为了获得公式22.2中各数据,先将表22-1资料进行计算如表22-2。

从表22-2的计算获得

ΣX=534 ΣX2=9876 ΣY=99.2ΣY2=324.18 ΣXY=1750

N=31

按这些数据进一步以下演算求r。

一、相关分析(correlation analysis)(当前章节内容组合) - 图2

(二)相关系数的假设检验

本例题31例,只是总体中一个样本,由此求得的相关系数,必然存在抽样误差。总体相关系数为零(ρ=0)时,从这总体中抽出31例,因为抽样误差,r也可能不等于0。氙以要判断该样本r是否有意义,需与总体相关系数,ρ=0比较,看两者的差别有无统计不学意义。

相关系数的假设检验,可用t检验,公式如下:

一、相关分析(correlation analysis)(当前章节内容组合) - 图3公式(22.2)

自由度v=n-2

H:ρ=0

H1:ρ≠0

α=0.05

本例r=0.6097,n=31,代入公式(22.2)

表22-2 相关系数计算表

尿雌三醇X(mg/24h)(1) X2(2) 初生儿体重Y(kg)(3) Y2(4) XY(5)
7 49 2.5 6.25 17.5
9 81 2.5 6.25 22.5
9 81 2.5 6.25 22.5
12 144 2.7 7.29 32.4
14 196 2.7 7.29 37.8
16 256 2.7 7.29 43.2
16 256 2.4 5.76 38.4
14 196 3.0 9.00 42.0
16 256 3.0 9.00 48.0
16 256 3.1 9.61 49.6
17 289 3.0 9.00 51.0
19 361 3.1 9.61 58.9
21 441 3.0 9.00 63.0
24 576 2.8 7.84 67.2
15 225 3.2 10.24 48.0
16 256 3.2 10.24 51.2
17 289 3.2 10.24 54.4
25 625 3.2 10.24 80.0
27 729 3.4 11.56 91.8
15 225 3.4 11.56 51.0
15 225 3.4 11.56 51.0
15 225 3.5 12.25 52.5
16 256 3.5 12.25 56.0
19 361 3.4 11.56 64.6
18 324 3.5 12.25 63.0
17 289 3.6 12.96 61.2
18 324 3.7 13.69 66.6
20 400 3.8 14.44 76.0
22 484 4.0 16.02 88.0
25 625 3.9 15.21 97.5
24 576 4.3 18.49 103.2
534 9876 99.2 324.18 1750.0

一、相关分析(correlation analysis)(当前章节内容组合) - 图4

V=31-2=29

查t值表,t0.01(29)=2.756,本例tr=4.1423>t0.01(29),P<0.01,按α=0.05水准拒绝H,接受H1,可以认为临产妇24小时尿中雌三醇浓度与初生儿体重有正相关关系。

如果不用t检验,可以根据v查相关系数r界值表(附表22-1)。本例v=29,查表得知r0.01(29)值为0.456,而本例r=0.6097>r0.01(29),故P<0.01,与上述t检验的结果一致。