假设检验时,根据检验结果作出的判断,即拒绝H或不拒绝H,并不是百分之百的正确,可能发生两种错误。下面以样本均数与总体均数比较的t检验为例说明。①拒绝了实际上成立的H,即样本原本来自μ=μ的总体,由于抽样的偶然性得到了较大的t值,因t≥t0.05(v)按α=0.05检验水准拒绝了H,而接受了H1(μ≠μ),这类错误为第一类错误(或I型错误,type Ierror),如图19-3B。理论上犯第一类错误的概率为α,若α=0.05,那末,犯第一类错误的概率为0.05.②不拒绝实际上不成立的H,即样本原本来自μ≠μ的总体,H:μ=μ实际上是不成立的,但由于抽样的偶然性,得到了较小的t值,因t<t0.05(v),按α=0.05检验水准不拒绝H,这类错误称为第二类错误(或Ⅱ型错误,type Ⅱ error),如图19-3C。犯第二类错误的概率为β,β值的大小很难确切地估计,但知道在样本含量不变的前提下,α越小,β越大;反之,α越大,β越小。同时减少α和β的唯一方法是增加样本含量,因为增加了样本的含量后,均数的抽样误差小,样本均数的代表性强,也就是样本均数较接近总体均数,因而可使犯第一类错误和第二类错误的概率减少。

Ⅰ型错误与Ⅱ型错误的关系

图19-3 Ⅰ型错误与Ⅱ型错误的关系